Principal Components Analysis of Periodically Correlated Functional Time Series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persian Handwriting Analysis Using Functional Principal Components

Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...

متن کامل

Functional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis

Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...

متن کامل

Principal components analysis of nonstationary time series data

The effect of nonstationarity in time series columns of input data in principal components analysis is examined. This usually happens when indexing economic indicators for monitoring purposes. The first component averages all the variables without reducing dimensionality. As an alternative, sparse principal components analysis can be used but attainment of sparsity among the loadings is influen...

متن کامل

Block bootstrap for periodic characteristics of periodically correlated time series

This research is dedicated to the study of periodic characteristics of periodically correlated time series such as seasonal means, seasonal variances and autocovariance functions. Two bootstrap methods are used: the extension of the usual Moving Block Bootstrap (EMBB) and the Generalized Seasonal Block Bootstrap (GSBB). The first approach is proposed, because the usual MBB does not preserve the...

متن کامل

Conditional functional principal components analysis

This work proposes an extension of the functional principal components analysis, or Karhunen-Loève expansion, which can take into account non-parametrically the effects of an additional covariate. Such models can also be interpreted as non-parametric mixed effects models for functional data. We propose estimators based on kernel smoothers and a data-driven selection procedure of the smoothing p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Time Series Analysis

سال: 2018

ISSN: 0143-9782,1467-9892

DOI: 10.1111/jtsa.12283